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Solubility and solid-state characteristics were determined and multivariate data analysis was used to deduce
structural features important for solid-state limited solubility of marketed drugs. Molecules with extended ring
structures and large conjugated systems were less soluble, indicating that structural features related to rigidity
and aromaticity result in solubility restricted by stable crystal structures. These descriptors successfully predicted
the applied test set and can be useful for avoiding synthesis of compounds behaving like “brick dust”.

Introduction

It is well recognized that, over the past few decades, drug
leads and candidates have increased in size and lipophilicity,
making it more likely that they will be poorly soluble in aqueous
media.1,2 If the solubility remains poor in the gastrointestinal
fluids, poor absorption and a low bioavailability may result. This
is further complicated by the fact that it is not always possible
to find suitable formulations for these compounds.3 It would
be desirable to identify poorly soluble molecules at an early
stage of drug discovery to avoid their selection for synthesis.
This could potentially be achieved with computational models
for drug solubility.

We have previously studied poorly soluble compounds for
which the solubility was found to be restricted by poor
solvation.4 The lipophilicity interval of the compounds studied,
as identified with the calculated octanol–water partition coef-
ficient (ClogPa), was 3.5-6.8 with a mean ClogP value of 5.3.
Our observation that the solvation process, i.e., the incorporation
of the drug molecule into the water, was the most important
factor contributing to the poor solubility of this data set is in
agreement with the general solubility equation (GSE), eq 1,
established by Yalkowsky and co-workers.5 The GSE describes
the influence of the solvation (represented by the octanol–water
partition coefficient, log P) and the solid state (represented by
the melting point; Tm) on solubility:

logS0 ) 0.5- 0.01(Tm - 25)- log P (1)

where log S0 is the intrinsic solubility in molar units. A closer
examination of the predictions of this equation, using hypotheti-
cal compounds with low, intermediate, and high melting points
and a large interval in lipophilicity is shown in Figure 1. It is clear
that compounds with lower lipophilicity are more likely to display

poor solubility resulting from a stable crystal structure (gray circle
segment) than highly lipophilic compounds, which instead are
solubility limited by poor solvation (white circle segment). For a
compound with a Tm of 250 °C and a ClogP of 2, the GSE
approximates the solubility to be governed by the solid state to
52%, whereas at a ClogP of 6 only 27% of the solubility of such
high melting compounds is related to the solid state.

In this work, our aim was to identify structural features
resulting in solid-state limited solubility. With the aid of the
GSE equation (eq 1, Figure 1), we selected compounds with a
ClogP value of ∼2. The intrinsic aqueous solubility (S0) and
solid-state characteristics were determined experimentally, and
the dependence of the solubility on solvation and solid-state
characteristics was investigated by multivariate statistical tools.

Results

Regression Analysis of log S0 versus ClogP and Experi-
mental Solid-State Properties. The data set studied in this work
(Figure 2) displayed more than a 1000-fold range in S0 (-1.75
to -4.83 on a log molar scale) and only a 10-fold range in
ClogP (1.70–2.81). The R2 of the correlation between log S0

and ClogP of 0.54 for the 299 compounds that we investigated
in a previous study6 indicates that log S0 is clearly dependent
on the lipophilicity for a general druglike data set (Figure 3).
In contrast, the subset of 20 compounds studied experimentally
in this work shows no correlation to ClogP (R2 ) 0.04),
demonstrating that for this data set the solubility was related to
factors other than the lipophilicity.
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Figure 1. Influence of the solid state (gray) and the lipophilicity (white)
on the solubility, as predicted by the GSE equation. At log P e 2 only,
it is likely to find compounds whose solubility is mainly restricted by
the solid state and not by solvation, identified with the red circle.
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The experimental values for all compounds in the data set
are listed in Table 1. Regression analysis was conducted for
log S0 and each of the properties Tm, enthalpy of melting (∆Hm),
and entropy of melting (∆Sm) with the intention of investigating
which of them governed the solubility of these 20 compounds.
Lorazepam and oxazepam showed unusually high values of ∆Hm

and ∆Sm, and according to Grubb’s test at the 95% confidence
level, they were statistical outliers of the data set. A possible
molecular explanation for the high values of lorazepam and
oxazepam could be that the hydroxyl group in the C3 position
and the unsubstituted nitrogen in position 1 in the diazepine
ring can form dimers in the crystal through hydrogen bonding.7

The log S0 correlated well with both Tm (R2 ) 0.70, Figure 4)
and ∆Hm, (R2 ) 0.71) but less so with ∆Sm (R2 ) 0.31). Thus,
for the compounds investigated, the solubility values were
independent of the lipophilicity, and instead, solid-state proper-
ties such as Tm and ∆Hm were important determinants for the
solubility of these compounds.

Molecular Descriptors for log S0 and Validation with
an External Test Set. We were interested in deducing the
structural features related to poor solubility in the narrow
lipophilicity range around 2, which the GSE equation had
identified as the lipophilicity value below which the solid state
properties were likely to be major determinants of the solubility.

Thus, we modeled our solubility data using 2D molecular
descriptors and multivariate data analysis, which resulted in a
model with R2 ) 0.76, Q2 ) 0.75, and RMSE ) 0.45 log units.
As shown in Figure 5, the solubility was related to the rigidity,
captured by the number of rigid bonds, the Balaban index, and
the number of rigid fragments and to the aromaticity of the
molecule, identified with the Min eV #2 and Max eV #3
descriptors. For this data set, an increase in rigidity resulted in
a decrease in solubility. This is in contrast to the solvation
limited data set that we studied previously,4 in which the rigidity
of the molecule improved the solubility, most likely through
the reduced demand of a large cavity formation in the water. In
contrast, in the solid-state limited data set, the rigidity captures
the stability of the solid state. It is well-known that flexible
compounds do not form such stable crystal lattices as rigid ones
because of the conformational freedom of the molecules. The
rigidity of the molecule can further be linked to the Balaban
index, a commonly encountered topological index.8 This is a
measure of molecular shape that is essentially independent of
molecular size and the number of rings present in the molecule.
Flat, extended ring structures (more rigid molecules) result in
low values of the Balaban index, which in turn result in less
soluble compounds. Finally, it was found that a high aromaticity
will decrease the solubility. This identifies the importance of
the nonspecific π-π-interactions for the stability of the crystal.

The model was tested on an external test set comprising the
53 compounds left after the primary selection of compounds
with a narrow ClogP interval. The compounds, both training
and test sets, were sorted into “soluble” or “less soluble” based
on their position in the log S0 vs log P plot (Figure 3).
Compounds above the trend line were classified as “soluble”,
whereas compounds below the trend line were classified as “less
soluble”. The descriptors (Figure 5b) successfully predicted these
groups, with 95% of the compounds in the training set being
predicted accurately and a total of 79% of the test set (Table 2
and Supporting Information, Table S1). Notably, only 4 of the
29 “less soluble” compounds in the test set were falsely
predicted as being “soluble”.

Molecular Descriptors for Tm. The solubility of this data
set was highly correlated to the Tm (Figure 4), making an
investigation of which molecular descriptors were of importance
for the Tm of interest. The resulting model (R2 ) 0.74, Q2 )
0.71, and RMSE ) 35.9 °C) captured structural features related
to large ring structures, shape, and rigidity and were essentially
the same as for the solubility model (Figure 6). Primarily, they
encoded the lack of flexibility as a structural feature leading to
a high Tm. Thus, a molecule like alprazolam that is flat and
rigid because it has several interconnected rings is predicted to
have a high Tm, while it is anticipated that a molecule like
benzocaine that is small with flexible side chains will have a
low Tm. These findings are in agreement with previous studies
of structural features related to the melting point.9,10

Discussion

From the modeling results it becomes clear that molecules
suffering from solid-state limited solubility are rigid and have
a high aromaticity. These features are directly related to an
increased stability of the solid state, i.e., a higher melting point
and/or enthalpy of melting, since the molecules in our data set
with extended ring systems and conjugated fragments display
higher melting points and lower solubilities than molecules
lacking these features. As an example of how the descriptors
relate to the solubility, consider the structures presented in Figure
7. Compounds resulting in a low solubility and high melting

Figure 2. Chemical structures of the compounds studied.

Figure 3. Correlation between log S0 and ClogP for the 299 compounds
compiled previously by Bergström et al.13 The primary data set of 73
compounds with a ClogP value of ∼2 is displayed as filled circles,
and the cutoff value of log S0 ) -3.31, introduced to divide the
compounds into two groups for the validation of the computational
model, is shown.
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point all have a large exposed flat area and are rigid in
comparison to the highly soluble, low melting compounds. In
contrast, the molecules with flexible side chains can only form
weak nonspecific interactions in the solid state, making the
whole crystal lattice weak.

Neither the solubility model nor the melting point model
identified any descriptor related to the hydrogen bond properties
of the molecules as an important determinant, a feature that has
been identified previously as being important for the formation of
a stable crystal lattice.9,11,12 However, compounds with a large
number of intermolecular hydrogen bonds in the crystal, e.g.,
phenytoin as identified in the Cambridge Structural Database,
version 5.27 (Cambridge Crystallographic Data Center, U.K.), were
correctly sorted using these rigidity and aromaticity descriptors.
We note that the number of hydrogen bond donors is essentially
equal for the compounds in the data set, varying between 0 and 2,
whereas the number of hydrogen bond acceptors varies between 2

Table 1. Characteristics of the Compounds Studied

compd CAS no.a MW (g/mol) log S0 ( SDb (M) pKa
c acid/based ClogPe Tm ( SDf (°C)

∆Hm ( SDg

(kJ/mol)
∆Sm ( SDh

(J/(mol ·K))

alprazolam 28981-97-7 308.8 -3.60 ( 0.00 2.4 b 2.56 228.6 ( 0.2 32.0 ( 0.61 63.9 ( 1.22
benzocaine 94-09-7 165.2 -2.34 ( 0.03 2.5 b 1.92 89.4 ( 0.2 24.6 ( 0.30 67.8 ( 0.86
chlorpropamide 94-20-2 276.7 -3.30 ( 0.00 4.8 a 2.35 128.0 ( 0.1 25.7 ( 0.41 64.0 ( 1.02
corticosterone 50-22-6 346.5 -3.28 ( 0.02 n n 2.32 185.3 ( 0.1 35.5 ( 0.50 77.5 ( 1.10
desalkylflurazepam 2886-65-9 288.7 -3.72 ( 0.02 11.6 a 2.81 208.0 ( 0.1 30.7 ( 1.03 63.9 ( 2.14
disopyramide 3737-09-5 339.5 -2.38 ( 0.03 10.1 b 2.58 96.5 ( 0.1 26.7 ( 0.54 72.3 ( 1.47
ethylparaben 120-47-8 166.2 -2.38 ( 0.01 8.3 a 2.51 116.0 ( 0.1 27.9 ( 0.75 71.6 ( 1.92
griseofulvin 126-07-8 352.8 -4.83 ( 0.08 n n 1.91 218.2 ( 0.0 44.7 ( 0.78 90.8 ( 1.59
(()-indoprofen 31842-01-0 281.3 -4.72 ( 0.12 4.6 a 2.74 211.6 ( 0.5 40.3 ( 2.38 83.2 ( 4.48
(()-ketoprofen 22071-15-4 254.3 -3.52 ( 0.01 4 a 2.76 95.0 ( 0.1 37.3 ( 0.33 101.2 ( 0.12
lidocaine 137-58-6 234.3 -1.75 ( 0.00 8.5 b 1.95 67.8 ( 0.2 18.8 ( 0.53 55.1 ( 1.57
(()-lorazepam 846-49-1 321.2 -3.74 ( 0.07 11.5 a 2.37 180.0 ( 0.3 75.2 ( 2.19 165.9 ( 4.71
(()-omeprazole 7359-58-6 345.4 -3.40 ( 0.02 8.9/4.1 a/b 1.70 164.5 ( 0.3 na na
(()-oxazepam 604-75-1 286.7 -4.19 ( 0.02 n n 2.31 205.6 ( 0.4 86.4 ( 0.01 180.5 ( 0.13
phenacetin 62-44-2 179.2 -2.48 ( 0.00 n n 1.77 134.4 ( 0.1 34.1 ( 0.92 83.7 ( 2.27
phenytoin 57-41-0 252.3 -4.15 ( 0.04 8.3 a 2.09 295.8 ( 0.3 40.1 ( 0.75 70.4 ( 2.97
piroxicam 36322-90-4 331.4 -4.03 ( 0.01 4.5/3.6 a/b 1.89 200.5 ( 0.5 36.3 ( 0.15 76.7 ( 0.25
secobarbital 76-73-3 238.3 -2.36 ( 0.01 7.8 a 2.16 98.6 ( 0.1 22.9 ( 0.86 61.7 ( 2.31
triamcinolone

acetonide
76-25-5 434.5 -4.46 ( 0.01 n n 2.21 302.3 ( 1.1 na na

triazolam 28911-01-5 343.2 -4.04 ( 0.01 2.3 b 2.62 241.3 ( 0.2 41.0 ( 1.00 79.7 ( 1.96
min 165.2 -4.83 1.70 67.8 18.8 55.1
max 434.5 -1.75 2.81 302.3 86.4 180.5

a Chemistry Abstracts Service registry number (CAS no.). b Intrinsic solubility (log S0) expressed as the average log molar concentration ( standard
deviation (SD). SD values of 0.00 have the experimental error in the third decimal. c n ) neutral compound (no proteolytic function in the pH range 2–12).
Values for pKa were experimental, obtained from ref 17, or calculated from ref 18. d a ) acid, b ) base, n ) neutral, a/b ) ampholyte. e The calculated
octanol–water partition coefficient (ClogP) using the Daylight software, version 4.9. f Melting point (Tm) expressed as the average value ( standard deviation
(SD). g Enthalpy of melting (∆Hm) expressed as the average value ( standard deviation (SD). na ) not applicable (decomposing compound). h Entropy of
melting (∆Sm) expressed as the average value ( standard deviation (SD). na ) not applicable (decomposing compound).

Figure 4. Regression analysis of the solubility versus Tm. A more
detailed analysis of the solid state showed that the melting enthalpy
was highly correlated to the solubility (R2 ) 0.71), whereas the
correlation between solubility and melting entropy only was R2 ) 0.31.

Figure 5. (a, top) Prediction obtained from the PLS solubility model.
(b, bottom) Loadings of molecular descriptors: the number of rigid
bonds (Numb. Rig. Bonds), the Balaban index, the number of rigid
fragments (Numb. Rig. Fragments), the second smallest eigenvalue (Min
eV #2), and the third largest eigenvalue (Max eV #3). The error bars
correspond to the limits of the 95% confidence interval.
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and 8. Hence, we speculate that the limited range of the number
of hydrogen bond donors for this data set results in the intermo-
lecular hydrogen bonds within the crystal not being captured by
the models. It is probable that as the lipophilicity decreases, the
hydrogen bonding capacity will be a more pronounced determinant
for the compounds displaying a solid-state limited solubility.
However, such compounds seldom do become truly poorly soluble
compounds as indicated in Figure 3, where only a few compounds
with a log P < 0 have a lower solubility than 100 µM.

The accurate computational classification of the compounds
in this work highlights the opportunities to use rapidly calculated
molecular descriptors as identifiers of compounds exhibiting
solid-state limited solubility. Since most reports on predictions
of solubility have lacked a specific component dealing with the
solid state properties, we believe an improved computational
filter for identifying target compounds behaving like “brick dust”
can be developed on the basis of the findings in this work.

However, the investigation was based on marketed drugs and a
future challenge is to forecast lead compounds of “brick dust”
type. The application of the current model to this chemical space
is currently under investigation in our laboratories.

Conclusions

We have investigated which molecular characteristics will
enhance the risk of producing a solid-state limited solubility.
Descriptors such as aromaticity and rigidity were found to govern
solid-state limited solubility, flagging large, flat, and rigid molecules
with extended ring structures and conjugated π-electron systems
as less soluble. When these descriptors were used to predict an
external test set, 86% of all less soluble compounds were identified.
We suggest that such calculated molecular descriptors can be used
for rapid identification of synthetic target compounds with a high
risk of having solid-state limited solubility and thereby reduce the
risk of synthesizing “brick dust” molecules.

Experimental Section

Data Set Selection and Compounds Studied. A data set was
selected to incorporate as wide a range of solubility as possible,
simultaneously maintaining a narrow variation in ClogP. On the basis
of the GSE (Figure 1),5 we decided to focus on compounds with a
ClogP of around 2. Druglike compounds with such a value were
compiled from Bergström et al.,13 the AquaSol database (University
of Arizona, AZ), and SciFinder Scholar (American Chemical Society).
In total, this gave 73 compounds; of these, 20 were commercially
available, not too expensive in their free form, stable in solubility
studies and differential scanning calorimetry (DSC) experiments and
maintained the requirements for structural diversity (Figure 2 and Table
S1, Supporting Information). Chlorpropamide was purchased from MP
Biomedicals LLC, OH; phenytoin from Lancaster Synthesis Ltd.,
Heysham, Lancashire, U.K.; desalkylflurazepam, lorazepam, and
oxazepam from Larodan Fine Chemicals AB, Malmö, Sweden. All
other drugs were from Sigma-Aldrich Chemie GmbH, Germany. The
purity of the drugs used was greater than 98%, with the exception of
griseofulvin (a natural product), which had a purity of 96%.

Differential Scanning Calorimetry (DSC). Thermograms were
recorded using a Seiko instrument consisting of a DSC220C analysis
module with automatic cooling controller (Seiko Instruments Inc.,
Japan). Triplicate samples of 1–3 mg were weighed in aluminum pans,
which were then sealed and pierced (TA Instruments, DE). Samples
of each compound were heated from room temperature to ap-
proximately 50 °C above the melting temperature at a rate of 10 °C
min-1 and purged with nitrogen gas at a flow rate of 80 mL min-1.
If any anomalies such as the existence of an asymmetric peak shape,
multiple melting endotherms, or recrystallization exotherms were
detected, samples were run at a heating rate of 2 °C min-1 to allow

Table 2. Correct Classification of the Compounds Using Molecular
Descriptorsa

classb
less solubletr,c

%
solubletr,d

%
less solublete,e

%
solublete,f

%

less soluble 100 0 86 14
soluble 5 95 29 71

a The complete list and the predictions are given in the Supporting
Information. The model used for prediction is presented in Figure 4. b The
classes were based on the position of the relation between ClogP and log S0

for a general data set; the cutoff value was -3.31 on a log molar scale.
c Fourteen compounds were included in this group. d Six compounds were
included in this group. e Twenty-nine compounds were included in this
group. f Twenty-four compounds were included in this group.

Figure 6. PLS melting point model. (a, top) Observed vs predicted
Tm. (b, bottom) Loadings of molecular descriptors: the third largest
ring (MaxRing3), the number of rigid bonds (Numb. Rig. Bonds), the
number or rigid fragments (Numb. Rig. Fragments), and the Balaban
index. Error bars correspond to the limits of the 95% confidence interval.

Figure 7. Structural features that are indicative of low solubility owing
to the stability of the crystal structure (top panel) and of high solubility
caused by weak crystal structure (bottom panel) for the data set studied.
The compounds are (a) triamcinolone acetonide, (b) griseofulvin, (c)
lorazepam, (d) secobarbital, (e) lidocaine, and (f) disopyramide.
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further investigations to be made. Omeprazole and triamcinolone
acetonide decomposed directly after melting, even though increased
heating rates were used. Chlorpropamide, disopyramide, and triazolam
exhibited behavior indicative of polymorphism and were therefore
converted to the polymorph with the highest melting point.

Solubility Determinations. The S0 of the crystalline compounds
was determined in quadruplicate using the shake-flask method, as
described in detail previously.14 The method was modified for the
determination of two of the compounds, corticosterone and omeprazole.
Corticosterone exhibited a large standard deviation for the initial
measurements after 24 h, so a time study over 11 days (264 h) was
undertaken This was undertaken because long equilibration times
have often been observed for steroids.14,15 Our results revealed that
corticosterone needed at least 144 h to equilibrate. The data for
corticosterone that was used in the analysis were collected at the end
of the period, after 264 h. Omeprazole was not chemically stable for
24 h in water, so the stability at different pHs (7, 7.5, 10, and 12) was
tested (MilliQ water adjusted with 0.01 M NaOH). At pH 10 and
above, water solutions of omeprazole were stable over 24 h, and pH
10 was chosen for the determination. Every solubility value of the
quadruplicate was then calculated individually using the Henderson–
Hasselbalch equation. For the calculation, experimental values obtained
from Wan et al.16 were used, giving pKa of 8.9 (acid) and 4.1 (base).

Molecular Descriptors. CLOGP, version 4.9, from Daylight
Chemical Information Systems, Inc. (Aliso Viejo, CA), was used
to calculate the log P values. Further, a total of 93 2D descriptors
related to the molecular size, polarity, flexibility, charge distribution,
and connectivity were calculated with the AstraZeneca in-house
program Selma. They included well-known and commonly used
2D descriptors from different commercial sources, such as the
molecular refractivity (CMR), atom counts, rings counts, number
of rotatable and rigid bonds, all obtained from Daylight; BCUT
(Burden-Chemical Abstracts-University of Texas) parameters;17

topological indices (Wiener, 18 Balaban, 8 Motoc and Randić19

indexes); shape and connectivity indices from the Kier and Hall
suits of descriptors;20 element counts; Gasteiger charges;21 and
HYBOT hydrogen bond parameters (TimeTec Inc., Newark, DE).

Statistical Analysis. The principal component analysis (PCA) and
the partial least-squares projection to latent structures (PLS) were
performed in version 11 of the Simca-P software (Umetrics AB, Umeå,
Sweden). The data were mean-centered and scaled to unit variance.
A variable selection was applied to decrease the complexity of the
models and facilitate interpretation. First, the bottom 50% of the
variables exhibiting the lowest level of importance was excluded.
Second, variables duplicating the information contained within other
variables (residing in the same area of the PLS loading plot) were
excluded to leave just a few (3–7) variables representing the key
descriptors that encoded the majority of the information related to the
response variable. The aim of the variable selection was to maintain
predictivity and increase the robustness of the model by removing
information that was not directly related to the response variable (i.e.,
noise). The accuracy of the PLS models was judged by the R2 and
RMSE. The models were validated by cross-validated R2 (Q2) and
permutation tests (100 iterations) in which the values for the response
variable were randomized and the multivariate data analysis was
repeated to detect whether chance correlations had occurred. Finally
the solubility model was challenged by a test set. The test set applied
was extracted from the literature, and since it is well-known that
reported solubility values differ largely, we performed this as a
qualitative assessment. The experimental solubility data were clustered
into two groups based on the cutoff value found by the log S0-ClogP
trend line in Wassvik et al.6 The mean ClogP value for the 20
compounds investigated in this study (ClogPmean ) 2.28) was inserted
in eq 3 obtained in Wassvik et al., resulting in a cutoff value of log S0

of -3.31. Compounds having a higher solubility than this were
classified as “soluble”, whereas compounds with lower solubility were
sorted as “less soluble”. Thereafter, the remaining compounds from
the primary data set selection (n ) 53) were predicted with the PLS
model and the quantitative values transformed into these two qualitative
measures.
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